
Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 1
http://www.rooftop.com & http://www.glomo.sri.com

Radio Device API
Version: 17 August 1998; v2.03

Authors: 1 Dave Beyer (dave@rooftop.com),
Thane Frivold, John Hight, Darren
Lancaster, and Chane Fullmer of
Rooftop Communications

Mark Lewis (lewis@erg.sri.com)
SRI International

1 Purpose
Advanced software protocols for distributed packet radio networks are being designed, tested, and
fielded by a variety of organizations including: Rooftop Communications, University of California, Santa
Cruz, SRI International, Bolt Beranek and Newman, and the University of California, Los Angeles.
Additionally, a variety of organizations including Hughes, UCLA, Virginia Polytechnic Institute, ITT,
Utilicom and Hazeltine are developing next generation, highly-programmable digital radios and antennas
to provide the reliable and flexible wireless links for such networks. These future networks promise to
support efficient, reliable, and secure communication of multimedia traffic over rapidly-deployed,
multihop wireless infrastructures, that can serve as seamless extensions of the Internet.

This Radio Device API was developed, and continues to evolve, to facilitate both collaboration and
independent development of the network protocols and digital radio modem hardware. The intent is to
allow protocol software and digital radio modems to be easily integrated, or “mixed and matched,” into
distributed packet radio products (or Internet Radios).

Specifically, this Radio Device API is intended to:
• Define a concise, platform-independent, interface specification between digital radio modems

and the network protocols,
• Foster cross-organization collaboration between protocol and digital radio developers,
• Permit the implementation and testing of protocols in the absence of actual radio hardware,
• Provide standard methods for permitting radio-specific extensions, and
• Permit easy porting of protocols between multiple radios, and vice versa.

This Radio Device API is defined using the API Framework specified in the “API Framework for
Internet Radios” document.2 Following this framework, the API is defined primarily by a set of generic
“primitives” that can be mapped to various software or hardware implementations, as appropriate for
the particular hardware/software environment. Many of the primitives for this API are inherited from
the “Core Packet API” defined in the framework document.

An example software interface implementation called the “Generic Device Driver” specification is
presented in an appendix. Other successful implementations include a mapping to the Unix IOCTL
mechanism,3 and a serial message passing implementation.4

1 This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Small Business
Innovative Research Program (SBIR). Refer to the Acknowledgments section for details
2 See the “API Framework for Internet Radios” document, available through the http://www.rooftop.com and
http://www.erg.glomo.com web-sites.
3 Contact Mark Lewis (lewis@erg.sri.com) for specification.
4 Specification defined by 9 April 1998 email by Fred Templin (templin@erg.sri.com) titled “An Encoding of Radio
API Primitives for the ISI APT Radio via the SLIP Protocol.”

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 2
http://www.rooftop.com & http://www.glomo.sri.com

2 Architecture
The position of this “Radio Device API” is the same as the “Transceiver Frame Control Interface” (TFCI)
in Figure 1. The Radio Device API has been defined with the intent to avoid restricting how the “radio
device” functions are actually implemented. Thus, these functions may be performed in analog or
digital hardware, in communications controllers attached to or within the embedded microcontroller, or
in device driver software, or most likely, some combination of these.
Specifically, the Radio Device API assumes that the following general operations are provided by the
radio device (i.e., below” the Radio Device API).

• RF & IF radio stages (mixers, filters, power amplifiers, low-noise-amplifiers, ...),
• Modulation,
• Baseband spreading (direct sequence and/or fast frequency hopping),
• Preamble generation, detection, and synchronization,
• Framing (start/stop flags, zero-bit insertion, ...), and
• Error detection and/or correction (CRC computation, interleaving, error control coding).

The Radio Device API assumes that the following operations are performed by the software protocols
(i.e., “above” the Radio Device API):

• Media Access Control (MAC) protocols (“channel” scheduling and synchronization, avoidance
of hidden terminal collisions),5

5 Refer to the “Radio Device API Addendum: Support for TDMA Radios” for extensions which permit the precise
scheduling of packet transmissions and receptions to occur by the radio device, under the direction of the protocols.

Physical
Radio

Transceiver
Frame

Controller

Link
Controller

LCI TFCI PRINCI

Mobile/
Wireless
Network

Controller

Non-realtime network
 control (e.g., off-loaded onto
 network or user’s host CPU)
Routing
QoS
Multicasting
Neighbor discovery & auth.
Control of power saving mode
Pre-transport conditioning
Network security
Network management client
Network measurements

Continuous framing ops
 (e.g., on dedicated ICs)
Frame synch
Zero-insertion
Transceiver src/dst/bcast
Xmt/Rcv FIFOs
CRC
ECC, BER
Framing statistics

Continuous radio ops
Carrier freq.
Code control / scan
 phase, pkt acquisition
RSSI
Pwr control
Bit & symbol rates
Carrier detect, threshold
Capture detect & threshold

Increasing flexibility/programmability; Increasing general-purpose components

Increasing real-time requirements; Increasing cost sensitivity (less sharing)

Realtime subnet control
 (e.g., on dedicated radio CPU)
MAC-layer scheduling
Control of radio characteristics
 (subnet controller also possible)
Link-layer acks/nacks
Link-layer queueing
Use Transceiver src/dst
 addresses for link addresses
Routing/QoS cache table
 for forwarding in multihop nets
Link measurements

The “Protocols” The “Radio Device”

Figure 1: Position of the Radio Device API

Application
&

Middleware

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 3
http://www.rooftop.com & http://www.glomo.sri.com

• Link-layer protocols (reliable delivery of packets between neighbors or of local broadcast packets,
fair sharing of link resources among neighbors, discovery and authentication of new neighbors),

• Network-layer protocols (efficient routing free of loops despite dynamics, service-based routing
and queuing, efficient multicasting, security of network control traffic), and

• Internetwork-layer protocols (wireless-to-wired Internet routing issues, network management,
Internet-compatible interfaces).

Refer also to the companion document “Physical Radio Interface (PRI) Specification” for the
specification of the PRI interface in Figure 1 for radios with synchronous serial data interfaces. This
document may be of more use then the present document for those developing physical radio modules
without serial frame controllers (leaving the framing functions to a serial communications controller
running on the protocol’s embedded microprocessor, for example).

3 Logical Functionality
The logical functionality of the Radio Device API is defined using the API Framework defined in the
“API Framework for Internet Radios” document. This Radio Device API inherits from, and extends, the
“Core Packet API” defined in that API Framework document.

In accordance with this API Framework, the logical functionality of the Radio Device API is defined by
logical API primitives, qualifiers, and return codes. These are briefly summarized in this section. (Refer
to the API Framework document for further information.) In addition, this section discusses how the
basic packet handling procedures for this Radio Device API extend that of the Core Packet API.

3.1 Primitives, Qualifiers and Return Codes
The Radio Device API is defined by four basic types of primitives, as described in the following table and
illustrated in Figure 2.

Commands Asynchronous protocols-to-device primitives for performing immediate,
typically non-persistent actions. Example command primitives include:
start packet transmissions, reset the radio, and drop receive capture.

Variables Persistent radio state or long-term measurement primitives that support
one or more of the set, get, increment, and clear synchronous access
operations. Control variables include the raw channel bit rate, coding rate,
center frequency, transmit power, and carrier-detect threshold.
Measurement variables include the received signal strength and noise level.

Responses The synchronous device response to a protocol’s command or variable
operation. For a software based implementation (such as the Generic
Device Driver implementation), this is typically handled using the return
value from the command or variable function call (thus the dotted line in
the diagram below). For a packet- or shared buffer-based implementation,
the response could be returned in a separate packet or buffer, or by setting
a field in a shared buffer and switching an ownership flag.

Signals Asynchronous device-to-protocols primitives for reporting recent, typically
non-persistent events. The radio device should support the selective
enabling and disabling of each of these signals by the protocol software.
Examples include signals for packet transmission complete, packet
received, receive carrier detected, and receive capture detected.

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 4
http://www.rooftop.com & http://www.glomo.sri.com

Each primitive can be qualified to give more specific instructions such as specifying the radio “channel”
to which the command should be applied (for radios that support multiple channels), and specifying
which radio section (e.g., xmt or rcv) the operation should be applied. Of course, these qualifiers will
only be relevant to radios that support these capabilities.

The RadioVarSignalEnable variable is used by the protocols to enable or disable the generation of
individual signals by the radio device. All signals can be enabled or disabled at once using the
RadioSigAll code (a code in the Signal space defined solely for this purpose).

The Radio Device API also defines a set of return codes to provide a standard means for the radio
device to indicate the success or failure status in each Response to Command and Variable operations,
and in each asynchronous Signal delivered to the protocols. Examples of these codes include
RadioRetOk (request accepted or performed successfully), RadioRetFail (general request failure), and
RadioRetInvCmd (command is invalid or has not been implemented by this radio device).

3.2 Data Packet Handling
The following objectives guided the definition for the Core Packet API (which is inherited by this API):

• Simplify the job of the radio device driver programmer to the extent possible.
• Avoid packet copy operations.
• Support the use of standard, serial-communications controllers within the logical “Transceiver

Frame Controller” of Figure 1 that use arrays of pointers to contiguous “frame buffers”.6

As described in the Core Packet API definition, the Radio Device API communicates user data in the
form of packets, identified by a start pointer and a length. Though not a strict requirement, the radio
should be able to handle queues of such packets on the transmit and receive sides. A packet
information structure accompanies each packet. This packet information structure includes fields for
the packet buffer start and stop pointers, a protocol buffer handle, device address fields, bit error
information, the precise transmit and receive times stamped by the lower-modules of the transmitting
and receiving nodes, and a list of (variable, value) pairs to permit packet-specific tuning of transmit
characteristics, or to report packet-specific measurements on received packets. 7 Asynchronous signals
(RadioSigXmtPkt and RadioSigRcvPkt) are used to return transmit and receive packet buffers and
accompanying packet information structures back to the protocols. The reader is referred to the Core
Packet API for further information on the definition of these core packet-handling capabilities.

In addition, packet-handling extensions introduced in this Radio Device API were designed to:
• Support transmission of uninterrupted packet bursts.

6 Implementations for such controllers are available in IC’s, ASIC modules, and controllers on embedded
microprocessors such as Motorola’s 68360.
7 See the RadioDevPktInfo structure in the Generic Device Driver implementation for an example (Section A.1).

The
“Protocols”

The
“Radio Device”

Commands

Signals

Variables
set/get/inc/clr

Figure 2: Basic Types of API Primitives

Responses

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 5
http://www.rooftop.com & http://www.glomo.sri.com

Uninterrupted transmission of multi-packet bursts can be ensured formally using the variable
“RadioVarXmtBurstCnt” introduced by the Radio Device API. Multi-packet bursts allow the protocols to
transmit a number of consecutive packets without incurring the overhead of framing preambles between
packets despite possible processing delays that may delay the delivery of these consecutive packets from
the protocols to the radio device. Also, multi-packet bursts ensure that the transmitter remains “on” so
that neighboring nodes will be able to detect that the channel is occupied (via the RadioSigCarrier and/or
RadioSigCapture signals), and can refrain from transmitting interfering packets. Multi-packet bursts must
be destined for a single receiver or set of receivers, and should generally use a single set of radio transmit
characteristics (since there will be no synchronization preambles for each packet other than the first).

To ensure a multi-packet burst, the protocols increment this RadioVarXmtBurstCnt variable to indicate
the number of packets in the upcoming burst, or remaining in an active burst. At the start of each
packet transmission, the radio device decrements this variable. The radio devices turns off the
transmitter only if this variable is zero upon the completion of a packet transmission and there are no
packets in the radio device’s transmit queue. The protocols may modify this variable, using an
“increment” operation, before the start of, and/or during, the packet burst, but only by incrementing for
packets that have yet to be handed down to the radio device. If the variable is incremented to a positive
number after the radio has already started shutting down the transmitter, the radio should complete the
shut down, and then treat the variable as having been incremented during an idle or receive state (i.e.,
wait for the next RadioCmdXmtPkt to turn the transmitter back on). The increment operation instructs
the radio device to add the (possibly negative) value passed by the protocols to the current value of the
variable. However, the radio device never sets this variable to a number less than zero. When
transmitting a burst of packets, radio-dependent “idle” flags should be transmitted by the radio device
while the next packet is not yet available.

In the default transmit mode (see RadioVarXmtMode), packet transmission commands take precedence
over packet receptions.8 Therefore, in the default transmit mode, if the radio device receives a
command to transmit a packet (on a given channel for multichannel radios)9 while it is in the midst of
receiving a packet (on that channel), it aborts the packet reception and activates its transmitter circuitry
immediately, unless the radio can support simultaneous receive and transmits on this same channel.

If a variable primitive operation is performed during a packet reception that affects the radio’s receive
operation, the radio device should implement the change immediately, dropping the incoming packet if
necessary. If a variable primitive operation is performed during a packet transmission that affects the
radio’s transmit operation, the radio device should wait for the end of the transmission before
implementing the change. However, if a change to the transmit characteristics are attempted during a
formal packet burst (i.e., while RadioVarXmtBurstCnt > 0) the radio may a) ignore the change; b) do
whatever is necessary to implement the changes before transmitting the next packet in the burst (e.g.,
inserting another preamble if necessary); or c) return RadioRetPktXmtFail (if the change was attempted
using the packet’s information structure), or RadioRetInvState (if the change was attempted by a variable
primitive operation). Actual operation should be documented in the radio-specific header file.

8 This gives the MAC layer within the protocol software complete control over when to schedule packet
transmissions. For instance, the MAC layer may know that the intended recipient for the incoming packet is some
other distant node, who would not be interferred by a simultaneous transmission by this node.
9 In this document, the term “radio channel” and “channel number” refers to a logically separate modem/IF/RF
chain that can be used independently of other modem/IF/RF chains across the API.

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 6
http://www.rooftop.com & http://www.glomo.sri.com

3.3 Precedence for Radio Waveform Characteristics
In accordance with the API Framework, the following precedence is used by the radio device to
determine the current settings for the radio’s waveform characteristics:

Highest precedence Characteristics specified in a packet information structure for
an active packet transmission or reception attempt (according
to the packet information structure associated with the packet
being transmitted or being filled with received data).

Lowest precedence Characteristics specified by the persistent radio state
variables (RadioVar… primitives).

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 7
http://www.rooftop.com & http://www.glomo.sri.com

4 Radio Device API Definition

4.1 Qualifiers
Each primitive in the Radio Device API can be qualified by one or more of the qualifiers listed in this
section. The following qualifiers are inherited from the Core API defined in the API Framework
document.

get Primitive should support “get” operations.
set Primitive should support “set” operations.
inc Primitive should support “increment” operations.
clr Primitive should support “clear” operations.
info Used to retrieve capability information for variable primitives.
isr Tagged to signals running within an interrupt or high-priority thread.

In addition, the Radio Device API introduces the following qualifiers:
chNum Indicates that the primitive should be supported on a channel-specific

basis, for radios that support multiple simultaneous channels.

4.2 Primitives
This section identifies and describes the command, variable, response, and signal primitives of the Radio
Device API. Each primitive is labeled with Mandatory, Highly desirable, Desirable, or Optional,
indicating the degree of requirement by the protocols. A “Data” field indicates the generic input and/or
output data communicated across the API by each primitive.

4.2.1 Commands
The command primitives inherited from the Core Packet API, along with their aliases, include the
following.

Command, Alias Rqmt Qualifiers Data

CmdReset,
 RadioCmdReset

M

CmdNativeConsole,
 RadioCmdNativeConsole

O chNum User cmd string and response string.

CmdProcExec,
 RadioCmdProcExec

O chNum Diagnostic, or other procedure, to exec.

CmdXmtPkt ,
 RadioCmdXmtPkt

M chNum Pkt buf & its protocol buf handle

CmdRcvPkt,
 RadioCmdRcvPkt

M chNum Pkt buf & its protocol buf handle

Note the addition of the “chNum” qualifier to some of these inherited primitives. In addition, the
following inherited command has other extensions specific to this Radio Device API.

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 8
http://www.rooftop.com & http://www.glomo.sri.com

RadioCmdXmtPkt Core Packet API Command
Requirement: Mandatory

Qualifiers: chNum
Data: (See Core Packet API)

Description: (See Core Packet API.) Also, see RadioVarXmtMode for how
the packet should be handled by the radio device when a
carrier is detected on the channel.

The new commands introduced by this API are the following.

RadioCmdDropCapture Command
Requirement: Highly desirable (for DS radios only)

Qualifiers: chNum
Data:

Description: Commands the radio to drop code-synchronization of an
incoming chip stream. Receiver should return to “code-
synchronization-search” mode.

4.2.2 Variables and Groups
This section lists the radio state variables that may be available to the protocols. The variable primitives
inherited from the Core Packet API along with their aliases, include:

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 9
http://www.rooftop.com & http://www.glomo.sri.com

Variable, Alias Rqmt Qualifiers Data

VarVersion,
 RadioVarVersion

M get Version string (e.g., “2.0.1; 2 July 1998”)

VarName,
 RadioVarName

M get Name string given to lower module

VarClass,
 RadioVarClass

H get API class identifier

VarStatus,
 RadioVarStatus

H get, chNum Number indicating device status

VarSigEnable,
 RadioVarSigEnable

H get/set, chNum Signal number to enable or disable

VarGroupSelect,
 RadioVarGroupSelect

H set, chNum groupClassId, groupInstanceNum

VarGroupValues,
 RadioVarGroupValues

H get (set) , chNum groupClass & instance, {var, value} pairs

VarGroupClassName,
 RadioVarGroupClassName

H get, chNum Group class name string

VarGroupClassSize,
 RadioVarGroupClassSize

H get, chNum Group class size (number of variables)

VarMacAdr,
 RadioVarMacAdr

H get/set, clr, chNum MAC address/mask for this packet device

VarQPkts,
 RadioVarQPkts

H get, xmt/rcv, chNum No. of packets in queue

VarBitRate,
 RadioVarBitRate

H get/set, xmt/rcv,
chNum

Raw channel bit rate

VarMaxPkts,
 RadioVarMaxPkts

H get, xmt/rcv, chNum Max number of packet buffers

VarTestMode,
 RadioVarTestMode

H get/set/clr, chNum Test (e.g., loopback) mode

VarMtu,
 RadioVarMtu

H get, chNum Max. packet buffer size in bytes.

VarGroupClassInstances,
 RadioVarGroupClassInstances

H get, chNum returns # of instances given groupClassId

VarGroupClassDefine,
 RadioVarGroupClassDefine

O set, chNum groupClassId, name, size, instances, var list

VarGroupDefineNumMax,
 RadioVarGroupDefineNumMax

O get, chNum # of dynamically-defined groups supported

VarPktHeadLen
 RadioVarPktHeadLen

O get, chNum Number of bytes

VarPktTailLen,
 RadioVarPktTailLen

O get, chNum Number of bytes

VarQBytes,
 RadioVarQBytes

O get, xmt/rcv, chNum Total no. of bytes in queue

VarMaxMacAdrs,
 RadioVarMaxMacAdrs

O get, chNum Max. no. of rcv MAC address/masks

Note the addition of the “chNum” qualifier to most of these inherited primitives.

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 10
http://www.rooftop.com & http://www.glomo.sri.com

The new variables introduced by this API are the following.

RadioVarXmtBurstCnt Variable
Requirement: Highly desirable

Qualifiers: get/inc, chNum
Data: Holds the number of packets yet to be sent in current burst.

The inc operation provides a reservation for a no. of
additional packets to be sent in current burst, or the (neg.)
number that were previously reserved, but will not be sent.

Description: A variable used by the protocol to inform the radio of the
number of packets additional packets remaining to be
transmitted in an uninterrupted burst of packets.

RadioVarXmtPower Variable
Requirement: Highly Desirable

Qualifiers: get/set, chNum
Data: Transmission power.

Description: The RF transmission power in terms of units or a table index
as defined within the radio-specific header file.

RadioVarFreq Variable
Requirement: Highly Desirable

Qualifiers: get/set, chNum, xmt/rcv
Data: Center frequency.

Description: The RF center frequency in terms of units or a table index as
defined within the radio-specific header file.

RadioVarCarrierThresh Variable
Requirement: Highly Desirable

Qualifiers: get/set, chNum
Data: Carrier-detection threshold

Description: The receive carrier detection threshold, in terms of units or a
table index as defined within the radio-specific header file.

RadioVarRcvSignal Variable
Requirement: Highly Desirable

Qualifiers: get, chNum
Data: Receive signal power

Description: The current receive signal power measurement, in terms of
units or a table index, and averaged over some period, as
defined within the radio-specific header file.

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 11
http://www.rooftop.com & http://www.glomo.sri.com

RadioVarRcvNoise Variable
Requirement: Highly Desirable

Qualifiers: get, chNum
Data: Receive noise power

Description: The current receive noise power measurement, in terms of
units or a table index, and averaged over some period, as
defined within the radio-specific header file.

RadioVarCode Variable
Requirement: Highly Desirable (for DS radios)

Qualifiers: get/set, chNum, xmt/rcv
Data: PN code

Description: The pseudo-random code in terms of units or a table index
as defined within the radio-specific header file.

RadioVarXmtMode Variable
Requirement: Highly Desirable

Qualifiers: set/get,chNum
Data: The transmit mode that the radio device should use among

{RadioXmtModeCarrierIgnore (the default),
RadioXmtModeCarrierWait, RadioXmtModeCarrierFail}

Description: When operating in the CarrierIgnore mode the radio will
immediately transmit any packet passed for transmission
regardless of the receive signal state of the channel. When in
the CarrierFail mode, the radio will first measure the
RadioRcvVarSignal value, and if above the
RadioVarCarrierThresh threshold, will immediately return a
Response with the RadioRetPktXmtFailCarrier return code.10

When in the CarrierWait mode, the radio will transmit the
packet as soon as RadioVarRcvSignal is below
RadioVarCarrierThresh.
Upon reset or power-up, the radio will enter the
RadioXmtModeCarrierIgnore state, where it will remain
until changed by a RadioVarXmtMode:set operation.

RadioVarSilentMode Variable
Requirement: Desirable

Qualifiers: get/set, chNum
Data: on/off flag

Description: Controls receive-only-mode. No packet transmissions are
permitted while in silent mode (including any
synchronization control packets automatically sent by the
radio device).

10 Also, in this RadioXmtModeCarrierFail mode, if for some reason RadioVarRcvSig becomes >=
RadioVarCarrierThresh after sending the RadioRetOk response to the protocols but before starting the actual
transmission, then RadioSigXmtPkt should be sent with the RadioRetPktXmtFail return code.

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 12
http://www.rooftop.com & http://www.glomo.sri.com

RadioVarCodeRate Variable
Requirement: Desirable (for DS radios)

Qualifiers: get/set, chNum, xmt/rcv
Data: PN code rate

Description: The pseudo-random code rate (e.g., chips/sec) in terms of
units or a table index as defined within the radio-specific
header file.

RadioVarCodeOffset Variable
Requirement: Desirable (for DS radios)

Qualifiers: get/set, chNum, xmt/rcv
Data: PN code offset

Description: The offset in a pseudo-random code sequence, in terms of
units or a table index as defined within the radio-specific
header file.

RadioVarSymbolRate Variable
Requirement: Desirable

Qualifiers: get/set, chNum, xmt/rcv
Data: Modulation symbol rate

Description: The modulation symbol rate (e.g., symbols/sec) in terms of
units or a table index as defined within the radio-specific
header file.

RadioVarModulationType Variable
Requirement: Desirable

Qualifiers: get/set, chNum, xmt/rcv
Data: Modulation type

Description: The modulation type (e.g., BPSK, QPSK, …) in terms of a
table index as defined within the radio-specific header file.

RadioVarFecRate Variable
Requirement: Desirable

Qualifiers: get/set, chNum, xmt/rcv
Data: Error control coding rate

Description: The error control coding rate, in terms of units or a table
index as defined within the radio-specific header file.

RadioVarPowerMode Command
Requirement: Optional

Qualifiers: set/get chNum, xmt/rcv
Data: Power mode to enter; one of {RadioPowerUp,

RadioPowerStandby, RadioPowerSleep, RadioPowerDown}
(or radio-specific extension).

Description: Used to put the radio into specific power-saving mode.

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 13
http://www.rooftop.com & http://www.glomo.sri.com

The Radio Device API also defines the following read-only variable group:

RadioVarGroupOpConsts Variable Group
Qualifiers get, chNum

Description: Used to discover the (default) operational constants of this radio
device.

Variables: RadioVarPreambleLen in bits
RadioVarXmtFrameLen in bits
RadioVarXmtBurstMaxLen in bytes
RadioVarFreqIndexNum no. of frequency indexes
RadioVarFreqChangeDelay in usecs
RadioVarXmtRampUpDelay in usecs
RadioVarXmtRampDownDelay in usecs
RadioVarRcvCaptureLostDelay in usecs
RadioVarRcvCarrierOffDelay in usecs
RadioVarRcvSsCodingGain in dB
RadioVarRcvCaptureThresh in dBm
RadioVarRcvCaptureSNThresh in dB
RadioVarRcvMaintainSyncSNThresh in dB
RadioVarRcvInterferenceThresh in dBm

4.2.3 Signals
The signal primitives inherited from the Core Packet API, along with their aliases, include:

Signal, Alias Rqmt Qualifiers Data

SigAll,
 RadioSigAll

M chNum

SigError,
 RadioSigError

M isr, chNum Number indicating the error.

SigStatus,
 RadioSigStatus

H isr, chNum Number indicating the new status.

SigRcvPkt,
 RadioSigRcvPkt

M isr, chNum Rcv’d pkt buf & its proto buf handle

SigXmtPkt,
 RadioSigXmtPkt

M isr, chNum Xmt’d pkt buf & its proto buf handle

SigProcResults,
 RadioSigProcResults

D isr, chNum Results of a CmdProcExec.

Note the addition of the “chNum” qualifier to each of these inherited signals. The Radio Device API
also introduces the following signals.

RadioSigCarrierActive Signal
Requirement: Highly Desirable

Qualifiers: isr, chNum
Data:

Description: A signal indicating that the received signal strength
(RadioVarRcvSignal) has risen above the carrier threshold
(RadioVarRcvCarrierThresh).

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 14
http://www.rooftop.com & http://www.glomo.sri.com

RadioSigCarrierInactive Signal
Requirement: Highly Desirable

Qualifiers: isr, chNum
Data:

Description: A signal indicating that the received signal strength
(RadioVarRcvSignal) has fallen below the carrier threshold
(RadioVarRcvCarrierThresh).

RadioSigCaptureActive Signal
Requirement: Highly Desirable (for DS radios)

Qualifiers: isr, chNum
Data:

Description: A signal indicating that the receiver has synchronized to an
incoming code sequence.

RadioSigCaptureInactive Signal
Requirement: Highly Desirable (for DS radios)

Qualifiers: isr, chNum
Data:

Description: A signal indicating that the receiver has lost synchronization
to an incoming code sequence.

RadioSigXmtActive Signal
Requirement: Desirable

Qualifiers: isr, chNum
Data:

Description: A signal generated when the transmitter becomes active, at
the start of a single- or multiple-packet transmission.

RadioSigRcvActive Signal
Requirement: Desirable

Qualifiers: isr, chNum
Data:

Description: A signal generated when the receiver becomes active, and
ready to start receiving a new packet. This should occur
sometime after a RadioCmdReset commands, or after a
RadioSigXmtInactive signal is generated. This may also
occur upon completion of other radio transitions such as
changing frequencies.

RadioSigXmtInactive Signal
Requirement: Optional

Qualifiers: isr, chNum
Data:

Description: A signal generated when the transmitter becomes inactive,
at the end of a packet or packet burst.

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 15
http://www.rooftop.com & http://www.glomo.sri.com

RadioSigRcvInactive Signal
Requirement: Optional

Qualifiers: isr, chNum
Data:

Description: A signal generated when the receiver becomes inactive. This
should occur after receiving a RadioCmdXmtPkt command,
and sometime before a RadioSigXmtActive signal is
generated. This may also occur when starting other radio
transitions such as changing frequencies.

4.3 Return Codes
The Radio Device API inherits the return codes defined in the Core Packet API, and introduces no new
return code. Table 1 lists the standard, RadioReturn codes. Radio-specific header files may define
extensions to this set.

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 16
http://www.rooftop.com & http://www.glomo.sri.com

Table 1: Radio Device API, RadioReturn Codes
RetOk,
 RadioRetOk

Operation accepted or successfully performed.

RetFail,
 RadioRetFail

General request failure.

RetNoInit,
 RadioRetNoInit

Lower module not initialized.

RetTimeOut,
 RadioRetTimeOut

Request timed out.

RetMemOut,
 RadioRetMemOut

Lower module is out of memory.

RetHwFail,
 RadioRetHwFail

Hardware failure. A strong suggestion that the upper module
should issue a CmdReset command.

RetInvVersion,
 RadioRetInvVersion

Invalid API version number (or version not supported)

RetInvInitData,
 RadioRetInvInitData

Invalid initialization data

RetInvCtlBlockPtr,
 RadioRetInvCtlBlockPtr

Invalid control block pointer (used for device driver
implementations)

RetInvState,
 RadioRetInvState

Operation not permitted in current state.

RetInvCmd,
 RadioRetInvCmd

Invalid command or command not implemented by this lower
module.

RetInvVar,
 RadioRetInvVar

Invalid variable or variable not implemented by this lower module.

RetInvSig,
 RadioRetInvSig

Invalid signal or signal not implemented by this lower module.

RetInvDev,
 RadioRetInvDev

Invalid “device” pointer (used for context by some
implementations)

RetInvPtr,
 RadioRetInvPtr

Invalid pointer argument.

RetInvSize,
 RadioRetInvSize

Invalid size argument.

RetInvQual,
 RadioRetInvQual

Invalid qualifier.

RetInvParam,
 RadioRetInvParam

General invalid parameter error.

RetInvGroupClass,
 RadioRetInvGroupClass

Invalid group class identifier.

RetInvGroupInstance,
 RadioRetInvGroupInstance

Invalid group instance number.

RetPktRcvFail,
 RadioRetPktRcvFail

Pkt failed to be received, returning packet buffer. Pkt buffer is
being returned before any rcv has completed for this buffer.

RetPktXmtFail,
 RadioRetPktXmtFail

Pkt failed to be transmitted, returning packet buffer. Pkt buffer is
being returned before any xmt attempt has completed.

RetPktXmtFailCarrier,
 RadioRetPktXmtFailCarrier

Packet failed to be transmitted due to sensed carrier, pkt buf is
being returned.

RetPktXmtFailOverflow,
 RadioRetPktXmtFailOverflow

Packet failed to be transmitted due overflow of device xmt queue.

RetPktXmtFailUnderrun,
 RadioRetPktXmtFailUnderrun

Packet failed to be transmitted due to underrun of radio xmt queue
(used for radios which are put into persistent “transmit modes”).

RetPktRcvError,
 RadioRetPktRcvError

Other error in rcv’d pkt; typically reported with SigRcvPkt
accompanying a rcv’d pkt buffer with errors.

RetPktXmtError,
 RadioRetPktXmtError

Other error in xmt pkt; typically reported with SigXmtPkt
accompanying a xmt’d pkt buffer with some xmt error detected.

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 17
http://www.rooftop.com & http://www.glomo.sri.com

4.4 Summary of Primitives
Table 2 summarizes the names, degree of requirement (M-Mandatory, H-Highly desirable, D-Desirable,
O-Optional), qualifiers, and data for each of the Radio Device API’s logical primitives.

Table 2: Summary of Radio Device API Primitives
Commands Rqmt Qualifiers Data

RadioCmdReset M
RadioCmdXmtPkt M chNum Pkt buf & its protocol buf handle
RadioCmdRcvPkt M chNum Pkt buf & its protocol buf handle
RadioCmdDropCapture H* chNum Drop sync capture of incoming signal
RadioCmdProcExec O chNum Test or other radio procedure to execute
RadioCmdNativeConsole O chNum Cmd string and user-response string

Signals Rqmt Qualifiers Data

RadioSigAll11 M chNum
RadioSigError M isr, chNum Error string
RadioSigRcvPkt M isr, chNum Rcv’d pkt buf & its proto buf handle
RadioSigXmtPkt M isr, chNum Xmt’d pkt buf & its proto buf handle
RadioSigStatus H isr, chNum New status
RadioSigCarrierActive H isr, chNum
RadioSigCarrierInactive H isr, chNum
RadioSigCaptureActive H* isr, chNum
RadioSigCaptureInactive H* isr, chNum
RadioSigProcResults D isr, chNum Results of internal test or other procedure.
RadioSigXmtActive D isr, chNum
RadioSigRcvActive D isr, chNum
RadioSigXmtInactive O isr, chNum
RadioSigRcvInactive O isr, chNum

* For direct-sequence spreading radios.
11 Used by protocols in conjunction with RadioVarSignalEnable to enable or disable all supported signals at once;
never generated by the radio device.

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 18
http://www.rooftop.com & http://www.glomo.sri.com

Variables Rqmt Qualifiers Data

RadioVarVersion M get Version string
RadioVarName M get Name string
RadioVarClass H get API class identifier
RadioVarStatus H get, chNum Number indicating device status
RadioVarXmtBurstCnt H get/inc, chNum No. of pkts yet to be sent in burst
RadioVarMacAdr H get/set, clr, chNum MAC address/mask for this radio
RadioVarQPkts H get, chNum, xmt/rcv No. of packets in queue
RadioVarBitRate H get/set, chNum, xmt/rcv Raw channel bit rate
RadioVarXmtPower H get/set, chNum Transmission power
RadioVarFreq H get/set, chNum, xmt/rcv Center frequency
RadioVarCarrierThresh H get/set, chNum Carrier-detect threshold
RadioVarRcvSignal H get, chNum Receive signal power
RadioVarRcvNoise H get, chNum Receive noise power
RadioVarCode H* get/set, chNum, xmt/rcv PN code
RadioVarMaxPkts H get, chNum, xmt/Rcv Max number of packet buffers
RadioVarTestMode H get/set, chNum Test (e.g., loopback) mode
RadioVarMtu H get, chNum Max. packet buffer size in bytes.
RadioVarXmtMode H get/set, chNum Xmt mode for radio (carrier sense or not)
RadioVarGroupSelect H set, chNum groupClassId, groupInstanceNum
RadioVarGroupValues H get (set) , chNum groupClass & instance, {var, value} pairs
RadioVarGroupClassName H get, chNum Group class name string
RadioVarGroupClassSize H get, chNum Group class size (number of variables)
RadioVarGroupClassInstances H get, chNum returns # of instances given groupClassId
RadioVarSigEnable H get/set, chNum Signal number & TRUE or FALSE
RadioVarSilentMode D get/set, chNum On/off flag
RadioVarCodeRate D* get/set, chNum, xmt/rcv PN code rate
RadioVarCodeOffset D* get/set, chNum, xmt/rcv PN code offset
RadioVarSymbolRate D get/set, chNum, xmt/rcv Modulation symbol rate
RadioVarModulationtype D get/set, chNum, xmt/rcv Modulation type
RadioVarFecRate D get/set, chNum, xmt/rcv Error control coding rate
RadioVarPktHeadLen O get, chNum Number of bytes
RadioVarPktTailLen O get, chNum Number of bytes
RadioVarQBytes O get, chNum, xmt/rcv Total no. of bytes in queue
RadioVarPowerMode O get/set chNum Power mode for radio device
RadioVarMaxMacAdrs O get, chNum Max. no. of rcv MAC address/masks
VarGroupClassDefine O set, chNum groupClassId, name, size, instances, var list
VarGroupDefineNumMax O get, chNum # of dynamically-defined groups supported

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 19
http://www.rooftop.com & http://www.glomo.sri.com

5 Acknowledgments
The development of this API Framework was initially supported by the Small Business Innovation
Program (SBIR) through Rooftop’s Commercial Distributed Packet Radio project (contract no. DAAB07-
96-C-D010). It’s continuing evolution has been supported by the Defense Advanced Research Projects
Agency (DARPA) through the Global Mobile (GloMo) program’s Wireless Internet Gateways (WINGS)
project (contract no. DAAB07-95-C-D157), SRI International’s GloMo program, and the Adaptive Signal
Processing and Networking (ASPEN) program (contract no. F30602-97-C-0314). WINGS is a
collaborative effort by the University of California, Santa Cruz (the prime contractor) and Rooftop
Communications, and ASPEN is a collaborative effort by Raytheon Corp. (prime contractor) and
Rooftop. This document has also benefited from the constructive review and feedback from other
members of the GloMo contractor community, Government reviewers, and commercial radio
employees, including in particular:12

BBN / GTE
Internetworking

Ram Ramanathan,
Martha Steenstrup,
Greg Lauer,
David Li,
Regina Rosales Hain

SRI International (Authors plus)
Fred Templin,
Elin Klaseen,
Ambatipudi Sasty

CECOM Jay Staba UC Berkeley Bob Broderson
Hazeltine Jim Limardo UCLA Charles Chien,

Walt Boring,
ISI Mike Gorman,

Jack Wills
Univ. of California,
Santa Cruz

JJ Garcia-Luna-
Aceves

ITT Lester Matheson Univ. of Kansas Gary Minden
Raytheon George Vardakas,

Jason Erickson,
Kevin Burns,
Dale Feikema,
Jim Thomas,
James Tsusaki,
Edwin Lee

Univ. of Texas Heinrich Foltz,
James McLean

Rockwell Jim Stevens Utilicom Inc. Nuno Bandeira,
Steve Schapel,
Steve Wrolstad

Rooftop
Communications

(Authors plus)
Bich Nguyen

Virginia Tech. Scott Midkiff,
Nattavut
Smavatkul,
Francis Dominique,
Anwarul Hannan

12 This is an undoubtedly incomplete list, acknowledging the people who have provided contributions and/or
constructive review & feedback during the development of this still-evolving API. However, this list is not
intended to suggest complete agreement on, nor total endorsement of, the current API by those listed.

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 20
http://www.rooftop.com & http://www.glomo.sri.com

A. Generic Device Driver Implementation Mechanism Overview
This section summarizes the application of the Radio Device API to a software implementation of a
standard C-language-based “Generic Device Driver.”13 All of the primitives detailed above have a
simple, one-to-one mapping to one of three Generic Device Driver entry point functions. The section
contains the following subsections:

• Commands, Variables and Signals
• Other Generic Device Driver Entry Points

A.1 Commands, Variables and Signals
Generic Device Drivers must provide entry points for accepting commands from the protocols and
accepting requests to set or get radio variables. The prototypes for these two entry points (which are
available in a standard file dev.h) are:

uint32 (*DevCmdFp) (void * radioDev, uint32 num, uint32 quals,
 void * data, uint32 dataLen);

uint32 (*DevVarFp) (void * radioDev, uint32 num, uint32 quals,
 void * data, uint32 dataLen);

Generic Device Drivers must also be able to signal the protocol software by calling a protocol-specified
callback function when signal events occur. The prototype for this callback is:

void (*DevSigFp) (void * protoDev, uint32 sigNum, uint32 quals,
 void * data, uint32 dataLen, uint32, RadioRetCode);

The (*RadioDevCmdFp) and (*RadioDevVarFp) functions should, RadioReturn one of the standard,
RadioReturn codes detailed previously, or a radio-specific, RadioReturn code. Also, a, RadioReturn
code is delivered to the protocols in the, RadioRetcode argument in calls to (*RadioDevSigFp). The
following table describes the purposes for each of the other arguments to the above functions.

radioDev
protoDev

The radioDev argument allows the protocol software to supply the radio with
an opaque “handle”, previously supplied by the radio to the protocols, in
each call to device entry points. This pointer can provide context-
information to the radio device driver. For instance, this may be useful if the
same device driver code is being used to control multiple actual hardware
devices. The protoDev argument in the signal callback provides a similar
opaque handle back to the protocol software, with each signal.

num The num arguments identify the specific command, variable, or signal.
Enumerated types are defined in rad_api.h, with names identical to the
“primitive” names in the preceding section.

quals The quals arguments specify the applicable qualifiers, as listed in the
preceding section for each primitive. This is represented as a bit mask with
bits for Set, Inc, or Get, Xmt and/or Rcv direction, channel number, error
flag, error type, etc. Macros defined in dev.h (and listed in Table 5) facilitate
the use of these qualifiers while hiding the actual bit manipulation from the
programmer. Also, the upper 16-bits of these qualifiers are reserved for
radio-dependent extensions to the qualifiers.

data The data and dataLen arguments are used to pass data, or pointers to data,

13 The embedded and simulated communication devices drivers implemented in Rooftop’s C++ Protocol Toolkit
(CPT), conform to this Generic Device Driver specification.

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 21
http://www.rooftop.com & http://www.glomo.sri.com

dataLen across the interface. The format for this data for each variable, command,
and signal is described in the table below, as well as in rad_api.h. Radio-
specific extensions to the data must be described in the corresponding radio-
specific header file.

As detailed in the table below, the packet primitives use a RadioDevPktInfo structure defined in
rad_api.h . Currently, the radio device does not extend the DevPktInfo structure (defined in dev.h for all
generic packet devices), and uses the charGroup and DevChar structure described below to control the
xmt or rcv radio characteristics on an individual packet basis. For consistency (and in case basic Radio
Device fields are required to extend DevPktInfo in the future), RadioDevPktInfo is defined in rad_api.h
as:

typedef DevPktInfo RadioDevPktInfo; // signature of RadioDevPktInfo is also set to
// be equal to that of DevPktInfo

DevPktInfo is defined within dev.h as:
typedef struct _devPktInfo {

 uint32 signature; // Identifies this type for debugging

bytep buf; // points to start of buffer
uint32 bufLen; // len of buffer or of data in buf
void * bufHandle; // holds “protocol buf handle”

uint32 macAdr; // dst or src MAC adr for xmt/rcv pkts
uint32 errStatus; // 0 - no errors; 1 – uncorrectable bit errors;

 // 2 – totally correctable bit errors. Other error
 // codes defined in device-dependent hdr file

uint32 rcvTime_s; 14 // Timestamp for reporting the precise rcv
uint32 rcvTime_us; // time at the receiving node
uint32 xmtTime_s; // Timestamp for controlling and reporting the
uint32 xmtTime_us; // precise transmit time at the transmitting node

 uint32 charModsNum;// Number of device characteristics modifiers
 // in charMods[] array

DevChar charMods[DEV_PKT_CHAR_MODS_MAX];
 // List of device characteristics used for this
 // pkt, or selection of a variable group.
} DevPktInfo;

14 Deleted “RadioVarRcvTOA variable, since this functionality should be covered by time_s and time_us in the DevPktInfo
struct.

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 22
http://www.rooftop.com & http://www.glomo.sri.com

Where the DevChar structure is used to communicate the radio waveform transmit characteristics or
receive measurements for individual packet transmissions or receptions.

typedef struct devChar {
uint32 name; // The (enumerated) name of the

// characteristics variable primitive
// or VarGroupSelect

uint32 value; // The new or measured value
// for this characteristic, or the encoded
// classId and instanceNum for a group.

 } DevChar;
Variable primitives that are relevant for controlling or measuring radio device characteristics include:

• RadioVarBitRate,
• RadioVarXmtPower,
• RadioVarFreq,
• RadioVarRcvSignal,
• RadioVarRcvNoise,
• RadioVarCode,
• RadioVarCodeOffset,
• RadioVarCodeRate, and
• RadioVarFecRate.

Note that the memory pointed to by the “chars” variable (if any) must remain valid for the radio device
for the same period that the DevPktInfo structure (or derived type) is valid.
The following default radio MAC broadcast address is also defined in rad_api.h:

#ifndef RADIO_MAC_BROADCAST_ADR
#define RADIO_MAC_BROADCAST_ADR 0xFFFFFFFF
#endif

The RadioDevPktInfo structure can easily be extended to carry radio-specific information simply by
defining a new type which “derives” from the RadioDevPktInfo structure in the following way:15

typedef struct tRadioDevPktInfo {
RadioDevPktInfo radioPktInfo; // must be first
uint32 signature; // Identifies this type for debugging
uint32 slotNum; // xmt or rcv slot number of pkt sched (or

 // T_RADIO_SLOT_NUM_UNUSED)
uint32 slotOffset; // offset into slot in usecs (or

 // T_RADIO_SLOT_OFFSET_UNUSED)
uint32 rcvDuration; // The duration, in slots, during which

 // reception should be attempted (or
 // T_RADIO_SLOT_RCV_DURATION_UNUSED)
} TRadioDevPktInfo;

Unless specifically indicated otherwise, “API structures,” defined solely to communicate information
across the API (such as DevPktInfo) are themselves always owned by the calling module and must
ensure that the data in the structure remains valid until the protocols receive the appropriate signal (e.g.,
RadioSigPktXmt or RadioSigPktRcv), RadioReturning control of the structure memory to the protocols.
Table 3 lists the specific use of the data and dataLen arguments for each primitive in the Radio Device API.
For the variable primitives, the usage is defined according to whether the operation is a set, get, or inc.

15 This example provides a glimpse into the TDMA Addendum to the Radio Device API.

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 23
http://www.rooftop.com & http://www.glomo.sri.com

So that the called function called can determine the type and length of any data argument passed, and
perform consistency checking, the dataLen is always set to one of following:
• length of the memory (structure or string plus any terminating characters) pointed to by the data, or
• either 0 or DEV_ ARG_LEN_UNUSED (defined in dev.h) indicating that the data argument is not used.
Unused data arguments can either be set to (void *) 0 or DEV_ARG_PTR_NULL.

The RadioVarMacAdr variable is used to specify the MAC address and mask pair(s) for this radio device, or set
to the radio-specific MAC broadcast address to receive all packets (RADIO_MAC_BROADCAST_ADR). This
variable uses the RadioDevMacAdrInfo structure to convey the MAC address information:

typedef struct {
 uint32 macAdrLen; /* Number of bytes */
 void * macAdr;
 void * macAdrMask;
} RadioDevMacAdrInfo;

For a specific MAC address, the mask should be set to all 1’s. Incoming packet frames are only accepted if the
destination address in the frame header is the MAC broadcast address, or is equal to the MAC address
of the receiving node.

Table 3: Data Argument Usage By Generic Radio Devices
Commands data dataLen
RadioCmdReset
RadioCmdDropCapture

NULL NULL

RadioCmdXmtPkt
RadioCmdRcvPkt

Ptr to RadioDevPktInfo sizeof (RadioDevPktInfo)

RadioCmdProcExec Ptr to int32 with code for procedure sizeof (int32)

RadioCmdNativeConsole Ptr to Null-term. cmd string (on input) and
overwritten cmd string (output).

Max len of user-response
string + 1 (bytes)

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 24
http://www.rooftop.com & http://www.glomo.sri.com

Variables data dataLen
RadioVarXmtBurstCnt
RadioVarMacAdr
RadioVarBitRate
RadioVarXmtPower
RadioVarFreq
RadioVarCarrierThresh
RadioVarCode16

RadioVarTestMode
RadioVarMtu
RadioVarXmtMode
RadioVarSilentMode
RadioVarCodeRate
RadioVarCodeOffset
RadioVarSymbolRate
RadioVarModulationType
RadioVarFecRate
RadioVarPowerMode
RadioVarMaxMacAdrs
RadioVarGroupDefineNumMax
RadioVarGroupClassSize
RadioVarGroupClassInstances

get: Ptr to int32 for result

set: Ptr to int32 with new value

inc: Ptr to int32 with new value

sizeof (int32)

sizeof (int32)

sizeof (int32)

RadioVarGroupSelect set-only: Ptr to int32 with groupClassId,
groupInstanceNum encoded in upper
and lower 16 bits

sizeof (int32)

RadioVarGroupValues
RadioVarGroupClassDefine

set/get: Ptr to array of {variable, value}
pairs.

sizeof (int32) * 2 * length
of array

RadioVarGroupClassName set/get: Ptr for radio returned, Null-
terminated string. Passed down with
first (int32) encoded with groupClassId,
groupInstancesNum

Max. len of, Radio
returned string + 1 (bytes)

RadioVarClass
RadioVarStatus
RadioVarQPkts
RadioVarMaxPkts
RadioVarQBytes
RadioVarRcvSignal
RadioVarRcvNoise
RadioVarPktHeadLen
RaidioVarPktHeadLen

(get-only) Ptr to int32 for result sizeof (int32)

RadioVarVersion
RadioVarName

(get-only) Ptr for Radio returned, Null-
terminated string

Max. len of, Radio
returned string + 1 (bytes)

RadioVarMacAdr Ptr to RadioDevMacAdrInfo Sizeof (struct)

RadioVarSignalEnable17

16 For radios using codes greater than 32-bit codes, a structure should be used and defined in the radio-specific
header file.
17 The RadioVarSignalEnable variable is implemented using the (*DevSignalEnableFp) entry point. See
Section 0.

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 25
http://www.rooftop.com & http://www.glomo.sri.com

Signals data dataLen
RadioSigCaptureActive
RadioSigCaptureInactive
RadioSigXmtActive
RadioSigXmtInactive
RadioSigRcvActive
RadioSigRcvInactive

NULL NULL

RadioSigRcvPkt
RadioSigXmtPkt

Ptr to RadioDevPktInfo sizeof (RadioDevPktInfo)

RadioSigError Null-terminated string string len + 1 (bytes)

RadioSigStatus int32 with new status sizeof (int32)

RadioSigProcResults int32 wth procedure results code sizeof (int32)

RadioSigCarrierActive
RadioSigCarrierInactive

int32 rcv power measurement sizeof (int32)

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 26
http://www.rooftop.com & http://www.glomo.sri.com

A.2 Other Generic Device Driver Entry Points
Of the remaining eight Generic Device Driver entry-points, three are unused, and the other five have simple
responsibilities. A small skeletal driver (file my_rad.c) is available to provide default functions for these
other entry points, as well as templates and example code for the three functions discussed above.

The arguments and responsibilities for the remaining device driver entry points are described in the
following. The result, RadioReturned from each function are defined by the, RadioReturn codes
discussed previously.

uint32 (*DevInitFp) (uint32 version, void * protoDev, void * initData,
 DevSigFp sig, DevCntrlBlk * control);

This prototype defines the radio device’s initialization function. This is the only function known by
name to the protocols. The actual prototype to this function (which must match the above prototype)
should be included in the radio’s device-specific header file. The version argument gives the protocol’s
idea of what version of the API is being used. The protoDev argument is the protocol’s opaque handle,
to be used in subsequent calls to the signal callback function. The initData argument is not currently
used for Radio Device API devices, but is available for radio-specific extensions. The sig argument is a
pointer to the protocol’s signal callback function. The control argument points to the device’s “control
block” which contains pointers for each of the device’s entry-point functions. The radio device must fill
these in with actual pointers to its entry points before, RadioReturning. Also, an entry in this control
block must be initialized with the radio’s opaque radioDev handle. This handle will be passed down by
the protocols in each subsequent call to radio entry points. (Refer to the dev.h file for details on the
device control block).

uint32 (*DevOpenFp) (void * radioDev, bytep name, bytep mode);

uint32 (*DevCloseFp) (void * radioDev);

The open and close entry points are used to activate and deactivate the device. They should perform
whatever radio-specific operations are necessary. Also, the name argument should be stored, and used
for future RadioVarName variable queries. The mode argument is not used.

uint32 (*DevIdleFp) (void * radioDev);

The idle entry point is called when the protocols are idle. This permits the radio’s device driver to
perform “idle-time” processing, if any.

uint32 (*DevReadFp) (void * radioDev, bytep buffer, uint32 * len);

uint32 (*DevWriteFp) (void * radioDev, bytep buffer, uint32 * len);

uint32 (*DevFlushFp) (void * radioDev);

The read, write, and flush entry points are not used for radio devices. Their functions pointers should
be set to (void *) 0 in radio devices’ control block.

Radio Device API 17 August 1998; v2.03

Rooftop Communications Corp. & SRI International Page 27
http://www.rooftop.com & http://www.glomo.sri.com

Table 4: Generic Device Driver Prototypes

Return Name Arguments
Device Initialization

uint32 (*CpwDevInitFp) (uint32 version, void * protoDev, void * initData,
 CpwDevSigFp sig, CpwCntrlBlk * control);

Signal callback
void (*CpwDevSigFp) (CpwDevice device, uint32 num, uint32 qual,

 void * data, uint32 dataLen, uint32, RadioRetCode);
Device Entry points

uint32 (*CpwDevOpenFp) (void * radioDev, bytep name, bytep mode);
uint32 (*CpwDevCloseFp) (void * radioDev);
uint32 (*CpwDevReadFp) (void * radioDev, bytep buffer, uint32 * len);
uint32 (*CpwDevWriteFp) (void * radioDev, bytep buffer, uint32 * len);
uint32 (*CpwDevFlushFp) (void * radioDev);
uint32 (*CpwDevCmdFp) (void * radioDev, uint32 num, uint32 qual,

 void * data, uint32 dataLen);
uint32 (*CpwDevVarFp) (void * radioDev, uint32 num, uint32 qual,

 void * data, uint32 dataLen);
uint32 (*CpwDevIdleFp) (void * radioDev);

Table 5: Radio Device Qualifier Macros

Radio Device Macro Description
RADIO_QUAL_GET Specifies a get variable operation
RADIO_QUAL_SET Specifies a set variable operation.
RADIO_QUAL_INC Specifies a increment variable operation.
RADIO_QUAL_CLR Specifies a clear variable operation.
RADIO_QUAL_INFO Specifies a “info” variable operation.
RADIO_QUAL_ISR Specifies that the signal function is being called as a “software”

signal (otherwise it’s being called in a hardware interrupt).
RADIO_QUAL_XMT Specifies that the operation or signal refers only to the output (xmt,

write) direction.
RADIO_QUAL_RCV Specifies that the operation or signal refers only to the input (rcv,

read) direction.
RADIO_QUAL_CH_ENCODE (index) Returns a qualifier encoded with the specified channel number.
RADIO_QUAL_CH_DECODE (qual) Extracts the channel number value from the qualifier.

